Rinse Cups & Ink Caps available in Station Prep!

Frequently Asked Questions

Email Support

Support Email

hello@goodjudy.ca

Phone Support

Support Phone

+1 416 801 9787

Check most frequently asked questions here, if you still need help then please contact us at hello@goodjudy.ca

How...?

We suggest spraying with 70% isopropyl (alcohol) five minuets before the tattoo or while you set up your station. Allow to completely dry before filling with ink and you're good to go!  

They can be stored in the bag they come in or in a jar with a lid until ready to use.  

You can dispose of compostable items that may be contaminated with bloodborne pathogens or other contaminates in a compost bin that is going to be processed at an industrial facility. Technically you can dispose of contaminated compostables in a home system as well, however we cannot recommend this because the usage of the soil, the length of time and the exact conditions of a home compost bin are all different. Due to those factors there's no way to guarantee that an individuals home compost could yield soil suitable for growing food etc. 

When an item is industrially composted it goes through rigorous climate conditions in order to break down which deactivates most pathogens. Typically, temperatures reached in a well-managed compost operation are in a range of 50 to 65o C. Such temperatures are well above the thermal death points of mesophilic pathogens. As the temperature of the composting process increases pathogens are usually destroyed as they reach their thermal death points. The survival of bacteria is variable but most viruses are killed in about 20 minutes at 70°C. There is a relationship between temperature and time. A high temperature for a short period or a lower temperature for a longer period may be equally effective.  

Our gloves are made of a mixture of nitrile and organic material that our manufacturer blends together which is why they perform the same way regular nitrile gloves do while still holding the capacity to degrade quickly. They are certified under ASTM D5511. 

The organic compound additive attracts micro-organisms ( bacteria, fungi etc) that literally consume the glove material. Once this process is complete the only thing left behind is H20, CO2 and methane. Our manufacturing partners also conducted studies on how this process affects soil and plants that are exposed to this and found that it has no detrimental affects on their germination or growth patterns.  

Garbage disposal varies from place to place. If you work within an area that has an industrial composting system you can dispose of our products that way. We suggest setting up a compostable bin beside the trash bin at your tattoo station.

If your garbage disposal ships to a landfill only then you can still throw our products away with the trash and they will decompose naturally once exposed to light, air and other elements but at a slower rate then if they go to a facility. 

Some of our products are certified under a simulated landfill test. ( ASTM D5526-12 / ASTM D5511) This test  method covers the determination of the degree and rate of anaerobic biodegradation of plastic materials in an accelerated-landfill test environment. In other words, this test determines how bioplastics degrade in conditions without light and oxygen and are mixed with household waste and plastic waste for the purpose of creating the most similar conditions to a landfill as possible. This is an important test to us because it shows that testing specifically in a landfill environment has been considered.

Some of our products are certified home compostable meaning they don't require the specific heat and moisture conditions of an industrial composting facility to break down. They break down in under a year (around 9 months) . We've also thrown those in the test pile at home, dug them up every couple of months and watched their degradation in conditions where sunlight and little oxygen are present. Because most municipalities don't have the proper composting in place we don't want to bring in products that don't stand a chance at decomposing in a landfill. 

Here is a comprehensive chart that shows how microorganisms are classified. When looking at a label, you want to make sure you have represented organisms within a class (bacteria, non-enveloped or enveloped viruses, fungi, mycobacterium, or bacterial spores). As long as you have organisms within the same class or it kills organisms in a “tougher” class, the product is likely to do the job you need.  For example, in the case of Herpes and Hepatitis, they are enveloped viruses, so any product with HIV (or on the Health Canada COVID lists)  kill claims or other enveloped viruses should be good to kill Herpes and Hep B. 

Yes, bio-plastics are just as suitable for use as cross contamination barriers as petroleum plastics are. Viruses and bacteria are too large to pass through plastics on a molecular level.  

What is important to note is that within the category of bio-plastics and petroleum plastics there is a wide variety of different types of plastic. For example PLA (poly-lactic acid) is the most widely used type of plant based bio-plastic on the market, it is compostable and can be produced in many forms including films and hard plastics. It is compostable and made of sustainable materials. PE plastic (polyethylene) is a petroleum based plastic that can also be made into films and hard plastics but is derived from oil and will take hundreds of years to break down. while they are made of different materials they both share similar physical properties that make them excellent barriers. Most importantly these plastics are hydrophilic - meaning they are impervious to liquids. You can wash a PLA bag with soap and water in exactly the same way you'd wash a ziploc bag and its structural integrity will not be compromised. Bio-plastics will only begin to decompose once discarded and exposed to bacteria and other natural elements.   

Terminology

Yes! Our hospital grade cleaner Benefect is suitable for a wide variety of uses including cleaning up bodily fluids that may contain pathogens. For more information on that please see the microorganisms chart at the bottom of this page. 

Benefect disinfectant is the only authentically botanical disinfectant technology in the world & has the highest safety rating allowable by the EPA, which means it poses no harm to the health of employees or customers or to the environment. Put simply Benefect is a natural ingredient that's chemical structure hasn't been altered. It has all the benefit without the risk of synthetic chemicals. 

Synthetic disinfectants that are used in our everyday work may expose us to health risks over time and contribute to microbial resistance. Synthetic chemicals are made by taking natural ingredients and chemically altering them to become something that doesn't exist in nature. There's no way to know what the long term effects of using synthetics will be on our environment.  

 We classify our biodegradable nitrile gloves as animal derivative free, which sounds like the long way of saying these gloves are vegan. Animal Derived Materials (ADMs) include any substance derived from the body of any animal, including fat, flesh, blood, milk and eggs. For an extensive list of things that are considered derived from animals you can visit peta.org 

Our goal is to support choices that protect animals and improve their lives while also being aware that it is impossible for a person or business to avoid every single animal ingredient. We support sustainable practices for using animal products when a plant based solution isn't yet possible. Remember our mandate is to reduce our reliance on single use plastic items which inevitably end up back in the ecosystems of many species that are under threat from human activity.  

Simply put, something is biodegradable if it can be disintegrated by bacteria, fungi, or some other biological process of its own. Composting is the process of recycling organic waste so that it can eventually be reused, done under specific conditions (in industrial composting) where oxygen, heat and moisture are monitored.  

The primary difference between compostable bio-plastics and biodegradable products is that industrially compostable products require a specific setting in order to break down, whereas biodegradable products break down naturally, in a similar way to how home compostables do. Typically composting is a faster process.

Industrial or commercial composting is the system used by cities to process large volumes of organic waste material.

There are basically three techniques used in industrial composting: windrow, in-vessel, and aerated static pile composting.

Industrial composting can process large amounts of waste and it can accommodate virtually any type of organic waste — meat, animal manure, bio-solids, and food scraps, for example. This method of composting controls environmental conditions such as temperature, moisture, and airflow. The material is mechanically turned or mixed to make sure the material is aerated to encourage bacterial activity. Industrial composting is done under controlled environmental conditions. By regulating the amount of heat and moisture of the organic waste materials, facilities can break down organics at a much faster rate than it would otherwise take.

Home composting is a small scale, unregulated process where an individual or household turns a bin of organics / compostables until it breaks down and becomes soil again. It is important for this process to be aerated (turned so materials are exposed to air) but it is not temperature controlled. Home compostable bio-plastics can be discarded in an industrial facility as well but does not require it.

PLA is the common name for Polylactic Acid or Polyactide. PLA is made from starch rich plants such as corn, wheat and sugar beets. These plants are first milled to separate the starch, from which is unrefined dextrose is processed. The unrefined dextrose goes through a fermentation process and the result is lactic acid. After condensation, two lactic acide molecules are converted into one lactide. The lactide molecule is then purified through vacuum distillation and a solvent-free melt causes the ring shaped molecule to turn into long chain polymers.

100% compostable means that PLA products are fully renewable. It can be converted back to monomer and polymer, or, it can be biodegraded into water, carbon dioxide and organic materials. PLA is much more sustainable than regular petroleum made plastic.

PBAT (short for polybutylene adipate terephthalate) is a biodegradable random copolymer, specifically a copolyester of adipic acid, 1,4- butanediol and terephthalic acid (from dimethyl terephthalate). PBAT is a certified 100% compostable material, which leaves no pollution to the environment at all after quick degradation in composting facilities.

Here is a quote from european-bioplastics.org by the researchers at ETH Zurich and the Swiss Federal Institute of Aquatic Science and Technology (2018) who successfully demonstrated that that soil microorganisms metabolically utilized the carbon in the PBAT polymer both for energy production and also to build up microbial biomass:

“This clarifies that nothing remains after biodegradation besides water, CO2 and biomass,“ says Hasso von Pogrell, Managing Director of European Bioplastics e.V.. “With this study, two concerns that are constantly being raised about biodegradable plastics have been rebutted – the doubt that microorganisms fully metabolize certified biodegradable plastics and the concern that the oil-based part of the polymer will not biodegrade completely.“

The tested PBAT polymer is a fossil-based, biodegradable polymer, which is used amongst others for the production of biodegradable, certified compostable bio-waste bags (according to EN 13432) or biodegradable in soil certified mulch films (according to EN 17033).

PBAT is marketed commercially as a fully biodegradable plastic, with BASF's ecoflex® showing 90% degradation after 80 days in testing. Particular applications that are highlighted by the manufacturers include cling wrap for food packaging, compostable plastic bags for gardening and agricultural use, and as water resistant coatings for other materials, as in paper cups. Due to its high flexibility and biodegradable nature, PBAT is also marketed as an additive for more rigid biodegradable plastics to impart flexibility while maintaining full biodegradability of the final blend 

Even though PBAT and PLA are both 100% compostable and biodegradable. They are two different bio material.

  • Source: PLA comes from lactic. PBAT is a copolymer with three different monomers.
  • Application aspect: PBAT is used in blow film more often while PLA is more suitable for extrusion/injection/thermoforming/... grade application.
  • Properties: PBAT is soft and flexible with low elastic modules, PLA is hard and rigid.

Our barrier films are a blend of these two bio-plastics which is why they are capable of breaking down on their own, outside of an industrial composting facility.  

Accelerator-Free gloves are manufactured without the use of accelerator chemicals such as Mercaptobenzothiazole (MBTs), thiazoles, thiurams and dithiocarbamates to help protect glove users from a nonallergic reaction to any of the numerous irritants from both glove and non-glove associated sources. They are recommended for people with skin sensitivities.

Anaerobic meanings without the presence of oxygen. So when you hear the term anaerobic digestion or decomposition that means that something is being broken down without requiring oxygen. 

In relation to composting and biodegradability it's important to know if a product can break down with out requiring oxygenation because then it does not necessarily need to be industrially composted to fully break down. 

Non-cytotoxic means a material cannot / does not pose any risk to living cells. This terminology is used in our hygienic bio-plastic materials because they have been tested to be safe for skin contact as well as being virus and bacteria protected. 

Uncategorized

Depending on what country you are in the answer to this may differ. It is best to check with your municipality. In Canada and the United States (we operate in North America) tattoo garbage is disposed of in the same landfill garbage system that regular household and commercial business garbage goes to. This means that if a product is contaminated by blood or other fluids that are considered biohazardous it is still being disposed of in a way that does not treat or separate the contaminated item. The advantage to using biodegradable and compostable products that end up in a landfill is simply that they will break down under those conditions instead of remaining a biohazard indefinitely.  

There is no one answer to climate change and the plastic crisis we face, it is really going to be a combination of all three of these options that will make an impact. 

However, when it comes to items such as razors and barriers that are contaminated with biohazardous materials you cannot recycle them or reuse them; the only option is to send it to a landfill. While it is a step in the right direction to use recycled plastics, in particular for tattooing it only gives the item a short lived second life before ending up in the garbage. That is why we prefer to use compostables and biodegradables that have been shown to decompose when sent to a landfill.  

Petroleum plastics come in many varieties - some are chlorinated and release harmful chemicals into the ground which in turn hurt the surrounding water systems and animals that drink the water. Other plastics that are exposed to sunlight break down over decades becoming only smaller and smaller plastic particles. This is also devastating to humans and animals. Landfills do not exist outside the realm of natural eco-systems and inevitably will effect what is around them. 

Petroleum plastics do not break down through bacterial decomposition - it is only through photodegradation ( exposure to UV rays) that their molecular chain breaks apart. This is why plant based alternatives like PLA bio-plastics are more eco-responsible; they break down through bacterial decomposition turning into water and carbon dioxide instead of remaining plastic.